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A kinetic description of lattice-gas automaton models for reaction-diffusion 
systems is presented. It provides corrections to the mean-field rate equations in 
the diffusion-limited regime. When applied to the two-species Maginu model, 
the theory gives an excellent quantitative prediction of the effect of slow diffu- 
sion on the periodic oscillations of the average concentrations in a spatially 
homogeneous state. 
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1. I N T R O D U C T I O N  

In this paper we describe how a relatively simple theory quantitatively 
explains the deviations from mean-field behavior that occur in diffusion- 
limited chemical reactions. The modeling of chemical reactions in spatially 
extended systems is an interesting application of a class of microscopic 
models called "lattice-gas automata. ''1~1 Space, velocity, and time are all 
discrete in such models, which simplifies implementation on computers as 
well as theoretical analysis. Lattice-gas automata (LGA) provide a flexible 
tool for studying the various phenomena resulting from the interplay 
between reaction and diffusion. I-~1 

Here we will not be concerned with chemical pattern formation, but 
instead we will consider a spatially extended two-species model exhibiting 
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coupled periodic oscillations of the concentrations of both species in a 
spatially homogeneous state. If the reactions are slow compared to the 
diffusion, then mean-field or Boltzmann theory equations give an excellent 
description of the reaction kinetics. This is the so-called reaction-limited 
regime. In the opposite diffusion-limited case, however, when the diffusion 
is slow compared to the reactions, there is no time to equilibrate after a 
reaction before another reaction occurs. Consequently, equal-time correla- 
tions will be present that invalidate the Stosszahlansatz or molecular chaos 
assumption used to derive the Boltzmann equation. Therefore in the diffu- 
sion-limited regime the behavior of the system is seriously modified. 

A condition that guarantees the absence of correlations in the equi- 
librium state of lattice-gas automata is the so-called detailed balance 
(DB) condition. Reactive LGAs in the diffusion-limited regime violate DB. 
A systematic theory for LGA's violating DB has recently been developed 
by Ernst and co-workersJ ~'4~ In the present paper we apply this theory to 
calculate corrections to the Boltzmann equation. A similar method has 
been developed by Boghosian and TaylorJ 5" 6~ 

The organization of this paper is as follows. In Section 2 we define the 
model used. We present the ring kinetic theory in Section 3, and compare 
it with computer simulations in Section 4. We end with a discussion in 
Section 5. 

2. THE M O D E L  

2.1. React ive  La t t ice -Gas  A u t o m a t o n  

In a lattice gas automaton particles live on a regular lattice ZP, so that 
their positions can only take a limited set of values corresponding to the 
nodes of the lattice. The velocities are also restricted, and must be equal to 
unit vectors oriented along the links connecting the neighboring nodes. 
We denote this set by {c~; 1 ~< i<~b}, where b is the coordination number 
of the lattice. The square lattice, with b = 4, will be used in this paper, as 
it has sufficient symmetry to ploperly describe the diffusive problem that 
we are considering. We further impose an exclusion principle requiring that 
no more than one particle can be at the same node with the same velocity. 
As a consequence there can be at most b particles per node, i.e., one per 
link. The state of the LGA is fully described by a set of boolean occupation 
numbers {s~(r); 1 <~i~b, r~ ,~} ,  where s~(r) equals 1 if there is a particle 
at node r with velocity e; and 0 otherwise. 

For multispecies models with rn types of reactants, such as the Maginu 
model, where m--2,  we have to introduce different types of particles. The 
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exclusion principle has to be modified in order to allow for the coexistence 
of several species. We adopt the coupled-lattice model described in ref. 7. 
In this approach particles of different types live on separate lattices, and 
only interact when a chemical reaction occurs. The exclusion principle is 
applied independently to each lattice. However, for the sake of compact- 
ness in the mathematical derivations, we can extend the former set of 
occupation numbers s;(r) to a new set {s~(r); 1 <<,i<~mb, r~,~} in such 
a way that channels 1 <~i<~b are reserved for particles of species 1, 
channels b + 1 ~< i ~< 2b for species 2, etc. The number of particles of type p 
is given by 

ph 

CZp(r) = ~ si(r ) ( 1 ) 
i = l + ( p - I ) h  

A time evolution step is the composition of two substeps, defined as 
follows. First, at each node independently a reactive collision takes place, 
during which a pre-reaction state s ( r )=  {s;(r), 1 ~< i<~mb} is replaced by a 
post-reaction state a(r) in a stochastic process governed by a set of transi- 
tion probabilities A.,.~. The reactive collision is followed by a propagation 
step, during which all particles are moved to neighboring nodes r + ei in 
the direction of their velocities. 

Let us describe the reactive collision step in detail. The chemical reac- 
tion we want to simulate is described by 

o~,X, +o~2X2+ ... +oc,,,X,,, ~ f l ,X ,  +f12X2+ ... +fl,,,X,,, (2) 

and occurs at a rate P(a, li), where a = (0q, ct2,... ) and p = (J~ l ,  J~2,. . .)  specify 
the number of particles before and after reaction, and Xp represents species 
p. The outcome of the chemical reaction only depends on the number of 
particles of each species, {%,(s); 1 ~< p ~< m}, present at the node before the 
reaction, not on the velocity distribution. After the reaction, the tip particles 
of each species are randomly redistributed over the b available velocity 
directions (this random redistribution models the diffusion process), which 
can be done in b!/(flp)! (b-tip)! ways for species p. Thus, the transition 
probability from precollision state s to postcollision state a is given by 

A,. = I t 1 " '  (b-p,,(a)/! 1 P(a, p) (3) 
�9 T ,  j 

Note that the normalization ~.~As~= 1 follows from the normalization 
~/~P(a, p)= 1. 
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2.2. M a g i n u  M o d e l  

The Maginu model ts) is a two-species model that exhibits a variety of 
behavior. It is described by the following equations for the concentrations 
x and y of the two species: ~21 

OX/OI = X -- X3/3 -- y + D.,. V2x 
(4) 

O),/Ot = (x  - -ky) /c  + D,. V2y 

with c > 0 and 0 < k < 1. The constants D.,. and Dy are the diffusion coef- 
ficients for the two species, respectively. Depending on the parameters, the 
model can exhibit Turing structures (when D,- is very different from D.,.) as 
well as periodic behavior. Here we will solely be interested in the case 
D,. = D.,., where the system develops a stable limit cycle in a homogeneous 
state. This limit cycle shrinks as the chemical reaction rate increases. 

The Maginu model as defined by Eq. (4) is not directly useful since the 
concentrations can become negative, and therefore cannot be simulated 
with an LGA/7~ This problem is, however, easily solved by using the linear 
transformation 

.v = �89 + x/x/12( l + k) /k  

~_ vk/~/12(1 + k ) / k  y = ~ + _  
(5) 

where x and y are the concentrations of the two species X and Y that we 
will study. 

Next we have to determine a set of reaction rates P(a, p) for the LGA 
that gives rise to the macroscopic behavior defined by Eqs. (4) and (5). The 
matrix P(o, p) is needed in numerical simulations as well as in the theory 
presented in the next section. In ref. 2 a method for constructing P(a, p) 
has been extensively discussed, and we will not give the details here. We 
will however, adopt the rules of ref. 7, where the number of particles is only 
allowed to change by + 1 during the reaction. The matrix P(a, p) is then 
uniquely specified. 

An important point in the definition of the collision rules is the intro- 
duction of a time scaloN parameter s, which allows us to control whether 
the system is in the reaction-limited or in the diffusion-limited regime (see 
ref. 7 for details). For  large values of s we have P(a, p ) 2  c~(~, p) (where 
is the Kronecker delta): chemical reactions occur at a very slow rate. This 
is the diffusion-limited regime, where diffusion is able to maintain the 
homogeneity in the system, and where Eqs. (4) and (5) are meaningfuk as 
the conditions for their derivation are fulfilled. On the other hand, for small 
values of s chemical reactions occur at a much faster rate, and diffusion is 
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no longer able to maintain spatial homogeneity. This is the reaction-limited 
regime. In the next section we present a theory that explains the behavior 
of the system throughout both regimes. 

3. R I N G  K I N E T I C  T H E O R Y  

In mean-field or Boltzmann approximation all correlations between 
occupation numbers are neglected, and the state of the system is completely 
specified by the average occupation numbers, 

f.(r,  t) = (si(r, t ) )  (6) 

The time evolution off,.(r, t) is given by the nonlinear Boltzmann equation, 

f,.(r, t + l ) =  f,.(r, t )+I i [ f ( r ,  t)] (7) 

The nonlinear collision operator is defined as 

I i [ f]  = ~, ( a i - s  i) A.,.,F(s)-- (a,.--si) F (8) 

We have introduced ( ..- )/.- as an average that assumes that the precolli- 
sion state is factorized over all channels, so that the probability to find a 
state s is given by 

F(s) = r-[ f~,( 1 - f , . ) ,  - .,., (9) 
i 

In this approximation, where F(s) is given by Eq. (9) and the transition 
rates A.,., are those of the Maginu model, the nonlinear Boltzmann equa- 
tion (7) is equivalent to the mean-field rate equations (4) and (5). 

To go beyond the mean field approximation we consider the pair 
correlation function, 

c~i/(r- r', t ) =  (~si(r, t)6sj(r', t))  (10) 

Here we have assumed that the system is translationally invariant. The 
fluctuations are defined as Osi=si-f , . .  A special role is played by the 
on-node correlations qq~j(0, t); by definition the diagonal elements vanish: 
~/,(0, t ) - 0 .  We neglect all triplet and higher order correlations. In a 
spatially homogeneous system, where f,.(r, t ) =  fd t ) ,  the time evolution of 
Ji.(t) is then described by the generalized Boltzmann equation, 

f,.(t + 1 ) - f ~ ( t ) = / , { A t ) ]  + ~ I ' , .k,[f(t)] ~kt(t) (11) 
k < l  
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Here the operator I '  describes corrections to the Boltzmann collision term I. 
It is defined by 

02li[f] ( ~SkfSlX) (12) 
I'i, kl[f] Ofk-------~l - (ai--Si) gkgl / r  

where gi = ((~si) 2) = fi( 1 - f , . )  is the single-channel fluctuation. 
In order to have a complete theory we must provide a time evolution 

equation for %.(r, t). To derive this equation we will make the important 
assumption that the average occupations change slowly in time. In fact, as 
far as the evolution of cg0.(r, t) is concerned, we will assume that no chemi- 
cal reactions occur at all, so that the model is purely diffusive. Under this 
assumption, the average occupations in equilibrium are given by 

f~q = x  ( i=  1, 2, 3, 4) 

f~q=y ( i=  5, 6, 7, 8) 
(13) 

where x and y are the average concentrations of species X and Y, respec- 
tively. When fi(r,  t) is close to equilibrium, the approach to equilibrium is 
given by the linearized Boltzmann equation (~f,-= J l--f~") ,  

~f,.(r + ei, t + 1) = ~. (1 + / 2 ) 0  OJ)(r, t) (14) 
J 

where ~u = flu and the linearized Boltzmann operator is defined by 

O~ (a,--s,) g j / r  (15) 

Under the assumption of slow reactions we have 

I (~+~)=~ 

1 1 1 1 0 
1 1 1 1 0 

1 1 1 1 0 

1 1 1 1 0 

0 0 0 0  1 

0 0 0 0  1 

0 0 0 0  1 
0 0 0 0 1  

000\ 
0 0 0  

0 0 0  

0 0 0  

1 1 1  
1 1 1  

1 1 1  

I 1 1 /  

(16) 
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It is natural to assume that fluctuations 5si(r, t) will decay to equilibrium 
in a manner similar to 5f,.(r, t), i.e., 

6si(r + e l ,  t +  1) =}-" (~ +s t) (17) 
J 

However, two fluctuations at the same node will be correlated after colli- 
sion, even if before collision the distribution is completely factorized. This 
is a consequence of the violation of detailed balance. 13~ The generation of 
on-node postcollision correlations is quantified by 

" ~ 0  f2~" [ f ( t ) ]  = (~a;(r,  t) ~o~j.(r, t))F (18) 

This expression vanishes in the nonreactive limit s---, oo. The presence of 
on-node correlations cg0(0, t) before collision gives rise to corrections to 

" ~ 0  f2,.-./" [ f i t ) ] ,  and the full postcollision source term is given by ~31 

B ~ i ( t ) =  ~ o , ,  I2~" [ f ( t ) ] + % ( O , t ) + ~  f2;j.-k,[f(t)]~kt(O,t ) (19) 
k . /  

"~ ~ 9 9 0 where I 2 ~ . i [ f ]  =0-/2 b' [f]/Of~.OJ). Combining Eqs. (17) and (19) with 
the definition of cg,..i(r, t) in Eq. (10), we obtain the ring kinetic equation 

~ii(r + c,-- c.j, t +  1)=(1 - ~ , .  o) }-'. (~ + f2)~k (~ + O)//C~k/(r, t) 
k , I  

+ Sr. oB~i[f( t) ] (20) 

This equation has been derived in a more systematic fashion in ref. 3. 
The physical interpretation of Eq. (20) is as follows. Two fluctuations 

on the same node r that are correlated after collision at time to will be 
propagated to neighboring nodes r + c; and r + Ci. Due to the collision with 
other particles at these nodes the correlation will be scattered to all direc- 
tions as described by (~ +/2). Thus both fluctuations branch into many 
different paths. At time to + r the weight of each path is given by the same 
factor (1/4) ~. If two correlated paths end at the same node--a  so-called 
"ring" collision--they give rise to on-node precollision correlations, 
~f(0, to+ r) '~ (1/4) -'~ B(to), that change the time evolution of the average 
occupations according to Eq. ( 11 ). The actual value of cff0.(r, t) is a super- 
position of "ring" contributions from source terms at all earlier times, 
although the dominant contribution comes from the last few time steps. 

The fact that Eq. (20) is linear in ~ allows us to write 

l - - I  

c(g,.-/(0, t ) =  ~ ~ K~i.kt(t--t')Bk,(t') (21) 
t '=O k , I  
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Here Kii .kl( t -- t ' )  is a memory kernel which does not depend on any of the 
model parameters--al though it does depend on the system size L - - an d  
thus can be constructed once and for all using Eq. (20). This can be done 
in an efficient manner by exploiting the rotation and reflection symmetry 
of K~i.kl(t -- t'). 

After an initial fast decay, the memory function decays algebraically 
for large t, as K~j,k~(t)~ t -~ with r 1.2 for L=2 5 6 .  When the ring 
kinetic theory is evaluated numerically, on time scales on the order of 103 
time steps, this slow decay leads to the buildup of pair correlations that are 
much larger that what is observed in simulations. This excess of correla- 
tions would be corrected if we include higher order correlations that are 
not taken into account by the present form of the ring kinetic theory. 
Therefore it is desirable to cut off the memory kernel for large times, i.e., 
to set Ki/.k~(t)--O for t >  tcuto,l. It is natural to choose the cutoff equal to 
the time it takes to travel across the system: t~u,on.= L. 

By rewriting Eq. (20) in Fourier representation, it can be interpreted 
in terms of modes at different wavevectors q.~3~ When no reactions occur, 
the diffusive modes around q = 0  and the (spurious) staggered modes 
around q = (n, ~) play a special role, since they correspond to conserved 
densities. However, in the presence of reactive collisions there are no 
conserved densities, and all modes are in principle equally important in 
determining the size of the correlations. 

In the next section we will compare theoretical predictions with the 
results of computer simulations. Numerically, the theory of this section is 
evaluated as follows. At time t = 0 we set J;.(0) = xo for 1 ~< i ~< 4, J)(0) = Yo 
for 5 ~< i ~< 8, and ~a(r, 0 ) =  0. To perform a time evolution step fi'om time 
t to time t +  1, we first use f ( t )  to calculate the nonlinear Boltzmann 
operator I i [ f ( t ) ]  and the correction term I'i.~.~[f(t)]. Together with the 
on-node correlations ~/j(0, t), we then use these operators to calculate 
f . ( t +  1) with the help of Eq. (11). To calculate the evolution of the pair 
correlation function we use f . ( t )  and N~(0, t) to evaluate the source term 
Bij(t) in Eq. (19) and then obtain ~j(r ,  t +  1) with the help of Eq. (20). 
Iteration of the above procedure yields the set { [ x(t), y(t) ]; t/> 0 } defining 
a trajectory in the x-y  concentration plane. For large times, either a fixed 
point or a limit cycle is reached. 

4. C O M P A R I S O N  W I T H  S I M U L A T I O N S  

Our simulations were carried out on a 256 x 256 square lattice. The 
parameters used in the simulations were k = 0.9 and c = 2, i.e., identical to 
those used in ref. 7. At t = 0 the system was prepared in an uncorrelated 
homogeneous state, with average concentrations xo = Yo = 0.6. Then we 
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performed the time evolution of the LGA, according to Section 2. The 
initial time steps were discarded, as the system needs some time to build up 
the correlations that will eventually produce the shrinking of the limit 
cycle. Once the correlations have been created we record the spatially 
averaged concentration of both species. The scale parameter s was varied 
between s = 2 and s--20.  

In Fig. 1 the dashed line denotes the limit cycle as it is obtained from 
the mean-field theory defined by Eqs. (4) and (5), assuming that the 
concentration of both species are homogeneous and the term V 2 can be 
neglected. For  relatively large values of the time sealing parameter s we 
expect mean-field theory to be accurate. This is confirmed by the simula- 
tion data for s = 20, shown as a gray band in Fig. 1, which are reasonably 
close to the mean-field prediction. The width of the gray band corresponds 
to the fluctuations in the spatially averaged concentrations that occur due 
to the finite system size. 

When s is decreased correlations become important (measurements 
show that correlations are typically 10 times larger for s = 4 than for s = 20) 
and the diffusion process is not able to keep the system homogeneous. As 
a consequence, different regions in the system become desynchronized to a 
certain degree, and the contribution to the average concentration of one 

0.7 I I 

Y 0.5 

0.4 

0 . 6 -  

, " ) 1  t / / '  

0 . 3  ' ~ ' 

0.2 0.4 0.6 0.8 

X 

Fig. 1. Average concentration x and 3' in the Maginu model for several values of the time 
scaling parameter s = 4, 6, and 20. The outer dashed line corresponds to mean-field theory, 
given by Eqs. (4) and (51. Solid lines correspond to the ring kinetic theory of Section 3. The 
gray bands denote the result of  computer simulations performed on square lattices of  size 
256 • 256: their width corresponds to the size of the fluctuations from cycle to cycle, 
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region is partially canceled out by out-of-phase contributions from other 
regions. This produces a shrinking of the limit cycle in Fig. 1, as is shown 
by the simulation data for s = 6 and s = 4 in Fig. 1. The effect is stronger 
for smaller s. 

It is clear from Fig. 1 that mean-field theory completely fails for the 
smaller values of s. The solid black lines in Fig. 1 represent the limit cycle 
as it is predicted by the ring kinetic theory of Section 3. For  the values 
s = 20 and s = 6 shown in Fig. 1 our theory gives an excellent quantitative 
prediction of the shrinking of the limit cycle. For  s = 4 there are deviations 
due to higher order effects that are not taken into account. 

Analysis of the ring kinetic theory shows that as s is further decreased, 
the limit cycle shrinks continually, until at s---3 there is an inverse Hopf  
bifurcation from a limit cycle to a fixed point. This bifurcation corresponds 
to a desynchronization transition, where the coherence between different 
regions is lost completely. It should be noted that this transition is of a 
different character than the Hopf  bifurcation that occurs at the mean field 
level as a function of the model parameters  k and c. 

Let us consider the case s = 2 in some detail. Here s is close to the 
smallest possible value ~7~ and the fluctuations caused by the chemical reac- 
tions are strongest here. Diffusion is not fast enough to keep the system 
homogeneous except at very small scales. The ring kinetic theory for s = 2 
predicts a fixed point located at x =  y =  1/2. Simulations for a system of 
linear size L = 256 reveal that the average concentrations fluctuate around 
the point x = y = 1/2 in an irregular fashion, and in a range between 0.47 
and 0.53. In order to assess whether the result of the simulations for s -- 2 
corresponds to a fixed point or to a limit cycle, we compared numerical 
simulations for three different system sizes: L = 32, L = 256, and L = 1024. 
The concentration of species X versus time is plotted in Fig. 2. The vertical 
scale in all three plots is the same. Clearly, the amplitude of the oscillation 
decreases with the system size. In the L = 32 system the concentration x 
oscillates with an amplitude 0x-~0.10; in the L - - 2 5 6  system we have 
0 x ~  0.02, and in the L =  1024 system the fluctuations are very small, 
Ox---0.004. It is reasonable to conclude that for s = 2 the correct solution 
is a stable fixed point, in perfect agreement with our theory. 

In close connection with this last point, we have verified that for s >/4 
the limit cycle obtained in the simulations is finite and stable, and inde- 
pendent of the size of the system up to size L = 1024. For s = 3 our ring 
kinetic theory predicts a fixed point x = y = 1/2. However, simulations are 
here not conclusive, as systems of intermediate size L = 256 show a limit 
cycle, but large systems do not reach any stationary behavior within 
available computer time. We conclude that the (inverse) Hopf  bifurcation 
from a limit cycle to a fixed point at the level of the spatially averaged 
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Fig. 2. Average concentration x of species X versus time t for the Maginu model at s =  2, 
and system size 32 x 32, 256 x 256, and 1024 x 1024, respectively. The bigger the system, the 
smaller the fluctuations. 

concentrations in a large enough system must occur between s = 2  and 
s = 4 .  

The comparison between ring kinetic theory and simulations has so 
far been restricted to the shape of the limit cycle. Figure 1, however, does 
not give any information about the actual time evolution of the concentra- 
tions, or the period of oscillation around the limit cycle. In order to obtain 
this information, we have plotted in Fig. 3 the average concentration of the 
two species versus time, for both theory and simulations. Figures 3A and 
3B show the concentration of particles of type X and Y, respectively, for 
s = 10. Simulation results are indicated by a solid line, while the ring kinetic 
theory is denoted by a dashed line. The amplitudes of the oscillation agree 
quite well, as we already knew from Fig. 1. There is, however, some devia- 
tion between theoretical and simulated periods, which causes the curves to 
become slightly out of phase. The difference between both oscillation 
periods is about 3 %. Figures 3C and 3D show similar curves for s =4.  
Here the agreement is worse, and the difference in periods is about I 1%. 

Figure 4 shows how the oscillation period--normalized by dividing by 
s~clepends on s. We have plotted the mean-field value of the period as a 
dashed line; the ring theory is denoted by circles, and simulation results by 
triangles. It was shown in Fig. 1 that ring kinetic theory predicts the shape 
of the limit cycle quite well down to s = 6. It is therefore somewhat surprising 
that the mean-field prediction for the oscillation period, which is s-inde- 
pendent, is better than ring kinetic theory for all values of s. To resolve this 
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Fig. 3. Concentration or species X and Y versus time t for (A, B) s =  10 and (C, D) s = 4 .  
Solid lines are the result of the computer simulations (in systems of size 256 x 256 k while the 
dashed lines correspond to ring kinetic theory. 
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Fig. 4. Oscil lat ion period as a function o f  s. The mean-field value is indicated by a dashed 
line. Circles denote the r ing kinetic theory predict ion of  Section 3. Triangles are the simulation 
values. Mean-field theory is here in better agreement with simulations than is r ing kinetic 
theory. 
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issue it would be necessary to include higher order correlation functions in 
the theoretical description. This is clearly beyond the scope of the present 
paper. Furthermore, it can be seen that the approach to the mean-field 
period for large s is slow, and even for s = 20 there is a clear deviation of 
about 1%. This effect is probably due to the particular choice of the transi- 
tion rates, which are not able to maintain the local diffusive equilibrium 
even for high sJ -~ 

5. D I S C U S S I O N  

In this paper we have shown how a theory that takes into account 
equal-time pair correlation provides an excellent explanation of the large 
deviations from mean-field theory observed in diffusion-limited chemical 
reactions, as modeled by lattice-gas automata (LGA). Our theory is a 
straightforward application of the general framework established in the 
papers of Ernst and co-workersJ 3"41 It is not restricted to the Maginu 
model, but is applicable to any chemical reaction that can be modeled with 
an LGA. 

It is in principle possible to include triplet and higher order correla- 
tions as well. However, the good agreement between theory and simula- 
tions indicates that the ring theory of Section 3 captures the essential 
physics in a quantitative way. Although the comparison between theory 
and simulations reported here is restricted to the domain of LGA's, we 
expect that mutatis mutandi the general concepts apply equally well to con- 
tinuous systems. 

We have focused on a particular two-species model exhibiting periodic 
oscillations of the average concentrations. Wu and KapraP 91 have studied 
a model with more complicated temporal behavior--period-doubling bifur- 
cations and a transition to a strange attractor, as model parameters are 
changed. They investigated the consequences of spatial fluctuations by 
means of computer simulations. It is an interesting question whether some 
of the features observed in that work can be explained using the theory 
presented in this paper. As a final remark we mention that our theory 
provides a more microscopic analogue of the Langevin equation method 
used in ref. "10 to predict the magnitude of spatial density correlations. 
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